Correction du devoir d'électricité n°2 (4°)	C	A	R	Co
Exercice n°1: A chaque grandeur son symbole et son unité (6 points)				
U volt	6			
I tension ohm				
R intensité ← → ampère				
Exercice n°2: Les lois des circuits (11 points)				
I) Étude de l'intensité :	1			
1-a) Dans un circuit en série, l'intensité du courant est la même en tout point du circuit.	1			
1-b) Les lampes L1 et L2 sont branchées en série dans la même branche, l'intensité de courant qui les traverse est donc d'après la loi d'unicité égale.		1		
2-a) Dans un circuit en dérivation, l'intensité qui est fournie par le générateur est égale a la somme des intensités des courants qui traversent les branches dérivées.	1	1		
2-b) D'après la loi d'additivité on a : $I_g = I_1 + I_2$		1		
$3-I_g = I_1 + I_2 = 150 + 100 = 250 \text{ mA}$				
II) Étude de la tension :	1			
1-a) Dans un circuit en dérivation les tensions aux bornes des dipôles sont égales a la tension aux bornes de générateur.	1	1		
1-b) D'après la loi d'égalité des tensions dans un circuit en dérivation on en déduit que :		1		
$Ug = U_{L1}$	1			
2-a) Dans un circuit en série, la tension aux bornes du générateur est égale a la somme des tensions aux bornes des autres dipôles.	-		1	
2-b) d'après la loi d'additivité des tensions nous déduisons que : $Ug = U_{L2} + U_{L3}$		1		
3-a) On sait que $U_{L1} = Ug = 6V$.				
3-b) On sait que $Ug = U_{L2} + U_{L3}$			1	
donc $U_{L2} = Ug - U_{L3}$				
soit $U_{L2} = 6 - 4$				
$U_{L2} = 2 V$				
Exercice 3 : Adaptation (4 points)		1		
1) D'après le voltmètre la tension aux bornes du dipôle vaut $U = 0,504 \text{ V}$.				
2) On constate qu'il existe une tension non nulle aux bornes de ce dipôle isolé. Il s'agit donc d'un générateur. Le système citron + fil de cuivre + clou en fer constitue donc une pile électrique.			1	
3) Les valeurs affichées sur le culot de la lampe correspondent aux valeurs nominales de la tension et l'intensité.	1			
4) La tension aux bornes de la pile citron est très nettement inférieure à la tension nominale de la lampe. La lampe sera donc en sous tension et ne brillera pas correctement.		1		
Exercice 4 : Résistance et loi d'Ohm (3 points) 1- Le rôle des résistances dans les appareils de chauffage est de produire de la chaleur par effet Joule.	1			

2- Loi d'Ohm : la tension aux bornes d'un dipôle résistance est égale au produit de la valeur de sa résistance par l'intensité du courant qui la traverse. Soit : $U\!=\!R\!\times\!I$	1		
3- Calcul de l'intensité du courant traversant le radiateur :			
D'après la loi d'Ohm : $U = R \times I$			
Donc on a : $I = \frac{U}{R}$		1	
soit: $I = \frac{230}{100} = 2.3 A$			
Exercice 5 : caractéristique d'un dipôle (3 points)		2	
1- Voir graphique 2. La correctéristique de ce dinâle est une droite qui nesse l'erigine. Il clegit dens d'une		2	
2- La caractéristique de ce dipôle est une droite qui passe l'origine. Il s'agit donc d'un dipôle résistance.	1		
			1
Présentation et soin de la copie			1
Rédaction - orthographe			